Monthly Station Normals of Temperature, Precipitation, and Heating and Cooling Degree Days 1961-90 # **PACIFIC ISLANDS** James R. Owenby and D.S. Ezell January 1992 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climatic Data Center Asheville, North Carolina #### I. INTRODUCTION The climatological normals presented in this publication are based on monthly mean maximum and minimum temperature and monthly total precipitation records for each year in the 30-year period 1961-90, inclusive. Data are assembled by individual states. Most stations were operating as of December 1990. Some stations were closed prior to 1990, but were identified as "normals stations" for special applications. Most of the closed stations ceased operations in 1989 or 1990. Several adjustments were made to the data before the normals were calculated. These adjustments include estimating missing data, adjusting for time of observation bias, and adjusting for exposure changes (First Order stations, as defined in Section II, only). Data are presented in the order shown in the title. Units used in this publication are °F for temperature and inches for precipitation. Heating and cooling degree day (base 65°F) normals are derived from the monthly normal temperatures using the technique developed by Thom (1954a, 1954b, 1966). Degree day normals have also been computed to other bases and may be obtained from the National Climatic Data Center, Federal Building, 37 Battery Park Avenue, Asheville, NC 28801-2733, or by calling (704) 259-0682. The adjustment methodology is described in greater detail in Section II of this publication. The notes in Section V refer to the normals tables, station listing, and station locator map. ## II. NORMALS FOR FIRST ORDER AND COOPERATIVE STATIONS #### Temperature and Precipitation Normals First Order (Principal Climatological) Stations: First Order Stations record hourly observations and are usually staffed by professional observers. They can be identified as having WSO, WSFO, WSMO, WSCMO, or FAA in their name. For all First Order stations, any missing data for the 1961-90 period were estimated from the monthly values of neighboring stations. Time of observation adjustments were made, as necessary, to the data from the neighboring stations before these data were used to estimate the missing First Order station data (Karl, et al., 1986). Exposure change adjustments (Karl and Williams, 1987) were made to First Order stations in the Lower 48 States, but not to the stations in Alaska, Hawaii, or U.S. possessions because of the lack of a sufficient number of neighboring stations. The neighboring stations used in the adjusting procedure included stations from the Cooperative Station Network. Cooperative Stations: Cooperative Stations usually record daily data only and are usually manned by volunteer observers. For all Cooperative Stations, any missing data for the 1961-90 period were estimated from the monthly values of neighboring First Order and Cooperative stations. Time of observation adjustments were made to those stations in the Lower 48 States that required the adjustment. No adjustments were made to stations in Alaska, Hawaii, or U.S. possessions because of the lack of a sufficient number of neighboring stations. No exposure change adjustments were made to the Cooperative Stations due partly to a lack of adequate computerized station history information, but also because a Cooperative Station's identity changes (according to National Weather Service standards) when significant moves occur (generally at least 5 miles or 100 feet in elevation, subject to the judgement of the National Weather Service Cooperative Program Manager). Normals have been defined as the arithmetic mean of Methodology: a climatological element computed over a long time period. International agreements eventually led to the decision that the appropriate time period would be three consecutive decades The data record should be consistent (have no (Guttman, 1989). changes in location, instruments, observation practices, etc.; these are identified here as "exposure changes") and have no missing values so a normal will reflect the actual average climatic conditions. If any significant exposure changes have occurred, the data record is said to be "inhomogeneous" and the normal may not reflect a true climatic average. Such data need to be adjusted to remove the nonclimatic inhomogeneities. The resulting (adjusted) record is then said to be "homogeneous". If no exposure changes have occurred at a station, the normal is calculated simply by averaging the appropriate 30 values from the 1961-90 record. Since it is nearly impossible to maintain a multiple purpose network of meteorological stations without having some exposure changes, it is first necessary to identify and evaluate these changes and then make adjustments for them if necessary. The method used to estimate missing data and adjust for inhomogeneities is based on the Historical Climatology Network (HCN) methodology outlined by Karl and Williams (1987). This technique involves comparing the record of the station for which the normals are being calculated (the candidate station) to the records of This comparison is based on the following neighboring stations. definition of relative homogeneity provided by Conrad and Pollak "A climatological series is relatively homogeneous with respect to a synchronous series at another place if the temperature differences (precipitation ratios) of pairs of homologous averages constitute a series of random numbers that satisfies the law of errors." A neighboring station was not used if its record did not cover the same time period as the candidate station (i.e., was not synchronous or homologous). The underlying assumption behind such a definition is that variations in average weather have similar tendencies over a region. For example, cold winters at a candidate station usually occur simultaneously at its neighboring stations. If this assumption is violated, then there will be a systematic difference between the stations which will show up as temperature differences (or precipitation ratios) that do not follow the expected statistical pattern (law of errors). Acceptance of the definition of relative homogeneity allows the use of certain welldefined statistical techniques to make the adjustments. Inhomogeneities in the candidate station's record were determined by examining the location, instrument, and observation history of the station. After the periods of inhomogeneity were determined, adjustments were applied to remove the biases. The adjustments were determined using the following criteria. Neighboring stations were found which had homogeneous data records that covered the time period of the candidate station's inhomogeneous period. If the candidate station and a neighbor had a reasonably high correlation $(r^2>0.6)$ of monthly anomalies for the period in question, then the established homogeneous neighboring station was used to assess the impact of the candidate station's discontinuity. The part of the data record before the discontinuity was statistically compared to the part after the discontinuity. The Student's t-test was used for the temperature differences, while the nonparametric Wilcoxon rank-sum test was used for the precipitation ratios. statistical test indicated that the two parts of the candidate station's record were significantly different, then the earlier part of the record was adjusted (further details, with examples, can be found in Karl and Williams, 1987). After all exposure changes at the candidate station were corrected, the normal was estimated by averaging the appropriate 30 values from the 1961-90 adjusted record. If none of the neighboring stations had a sufficiently high correlation, then no adjustment was made. climatological elements (maximum temperature, minimum temperature, and precipitation) were adjusted separately. The adjustment method for temperature works best if all of the stations involved have the same observational schedule. This is generally true for First Order Stations which use the calendar day (midnight) observation time. Unfortunately, some cooperative stations have an observation time in the morning, some in the afternoon, some in the evening, and some at midnight, and this introduces a nonclimatic bias into the record. For an explanation of this bias, see Karl et al. (1986). To make the data reflect a consistent observational schedule, the adjustment technique developed by Karl et al. (1986) was used to convert the maximum and minimum temperature data for all stations to a midnight-to-midnight schedule, thus removing the time of observation bias. In summary, the normals methodology employed for this publication involved (1) adjusting all station data to a midnight-to-midnight observation schedule; (2) estimating missing data; (3) using the HCN method outlined above to adjust First Order stations with inhomogeneous records; (4) calculating the average monthly values; then (5) converting the temperature averages to the station's official normal, which is valid for the current (as of 1990) observation time. Due to the adjustment techniques employed, the normals published in this volume will not necessarily agree with values calculated by simply averaging the monthly observed values from 1961-90. It should be emphasized that the official normal temperature values printed herein are for the current (as of 1990) observation time. The station's observation time and the adjustment necessary to convert the temperature values to a midnight-to-midnight observation time are also shown in the tables. The adjustment factors should be added to the official normals to approximate a "midnight observation time average". This helps a user determine if temperature differences between nearby stations are true climate differences or if they may be caused by different observing schedules. The precipitation data were not adjusted for observation time. The monthly normals for maximum and minimum temperature were computed as described above. The monthly average temperature normals were computed by averaging the corresponding maximum and minimum normals. The annual temperature normals were calculated by taking the average of the 12 monthly normals. The annual precipitation normals were calculated by adding the 12 monthly normals. ## Degree Day Normals Simple arithmetic procedures were <u>not</u> applied to obtain the heating and cooling degree day normals. Instead, the rational conversion formulae developed by Thom (1954a, 1954b, 1966) were used. These formulae allow the adjusted mean temperature normals and their standard deviations to be converted to degree day normals with uniform consistency. In some cases this procedure will yield a small number of degree days for months when degree days may not otherwise be expected. This results from statistical considerations of the formulae. The annual degree day normals were calculated by adding the corresponding monthly degree day normals. ## III. SUPPLEMENTARY DATA Individual station values (by year-month) of average (maximum, minimum, and mean) temperature and total precipitation used to calculate the normals for the 1961-90 period are available from the National Climatic Data Center, Asheville, NC, and may be obtained in either microfiche (see example at the back of this publication) or digital media (TD-9641). In addition, extremes of monthly total precipitation and mean temperature are included, along with the standard deviations of the monthly temperatures. The median (i.e., 50th percentile), 11-year and 21-year means are also provided for both temperature and precipitation. #### IV. REFERENCES - 1. Thom, H.C.S., 1954a: The rational relationship between heating degree days and temperature. Mon. Wea. Rev., 82, 1-6. - Thom, H.C.S., 1954b: Normal degree days below any base. Mon. Wea. Rev., 82, 111-115. - 3. Thom, H.C.S., 1966: Normal degree days above any base by the universal truncation coefficient. Mon. Wea. Rev., 94, 461-465. - 4. Guttman, N.B., 1989: Statistical descriptors of climate. Bull. Amer. Met. Soc. 70, 602-607. - 5. Karl, T.R., and C.N. Williams, Jr., 1987: An approach to adjusting climatological time series for discontinuous inhomogeneities. J. Climate Appl. Meteor. 26, 1744-1763. - 6. Conrad, V., and L.W. Pollak, 1950: Methods In Climatology. Harvard University Press, 459 pp. - 7. Karl, T.R., C.N. Williams, Jr., P.J. Young, and W.M. Wendland, 1986: A model to estimate the time of observation bias associated with monthly mean maximum, minimum and mean temperatures for the United States. J. Climate Appl. Meteor., 25, 145-160. ### V. NOTES Precipitation normals less than .005 inch are shown as zero. Precipitation includes rainfall and the liquid water equivalent of frozen precipitation (snow, sleet, hail). Temperature normals are provided for mean monthly maximum temperature (NORMAL MAX), mean monthly minimum temperature (NORMAL MIN), and mean monthly average temperature (NORMAL). The median (50th percentile) monthly average temperature is shown as MEDIAN. The median is the middlemost value in an ordered series of values. Half of the values are greater than the median and half are less than the median. Monthly normals for February are based on a 28-day month. Figures and letters following the station name generally indicate a rural location and refer to the distance and direction of the station from the nearest Post Office. WSO, WSMO, and WSFO denote a National Weather Service office, meteorological observatory, and forecast office, respectively. FAA implies a Federal Aviation Administration station with an observing capability coordinated by the National Weather Service. Station elevations are in feet above mean sea level. The most current observation time (as of December 1990) for temperature is shown on the temperature tables under the station name. LT refers to Local Time (Standard or Daylight, as applicable). Stations located on islands (U.S. possessions) generally have short records (i.e., less than 30 years) and do not meet the criteria for computation of normals. Short-term or period averages are given for these stations (as shown). Maps show the locations of stations for which 1961-1990 normals have been prepared. A station listing provides additional details regarding each station's data. On the station listing pages, column "Code 1" refers to data with less than 35 months missing from 1961-90. Column "Code 2" refers to data that can have up to 20 years missing from 1961-90. The numbers (1-7) in these columns indicate the climatological elements observed and are defined in the Data Code Legend at the bottom of the page. For example, if a station had 12 months of temperature, precipitation, and snowfall data missing, a 6 would appear under column "Code 1" because 12 months is less than 35 months, and a 6 would appear under column "Code 2" because 12 months is less than 20 years. If the station had 58 months of data missing, then column "Code 1" would have a blank because 58 months is greater than 35 months, and column "Code 2" would have a 6 because 58 months is less than 20 years. Snowfall normals are not a part of this publication series, but information on the availability of snowfall data is included for user reference. MAX is maximum, MIN is minimum, MID OBS TIME ADJ is the adjustment factor to convert a normal to midnight observation time, ANN is annual, SEQ NO is sequence number and is used to locate the station on the map. STATION NO. is the Cooperative station number. | SEQ
NO. | STATE
NO. | STATION
NO. | CODE
1 | CODE 2 | STATION
NAME | LAT
DEG / MIN | LON
DEG / MIN | ELEV
(FT) | |------------|--------------|----------------|-----------|--------|--|------------------|------------------|--------------| | 1 | 91 | 4025 | 6 | 6 | ANDERSEN AFB GUAM | 1335N
1511N | 14455E
12033E | 624
475 | | 2
3 | 91
91 | 4100
4185 | 6 | 6
6 | CLARK AFB LUZON
FALALOP / ULITHI | 1002N | 13948E | 6 | | 4
5 | 91
91 | 4226
4229 | 6
6 | 6
6 | GUAM NAS
GUAM WSMO | 1329N
1333N | 14448E
14450E | 254
361 | | 6 | 91 | 4320 | 6 | 6 | JOHNSTON IS WSMO AP | 1644N
0720N | 16931W
13429E | 10
94 | | 7
8 | 91
91 | 4351
4375 | 6
6 | 6
6 | KOROR WSO
KWAJALEIN MISSILE RNG | 0844N | 16744E | 7 | | 9
10 | 91
91 | 4395
4460 | 6 | 6
6 | KOSRAE
MAJURO WSO AP | 0520N
0705N | 16302E
17123E | 7
10 | | 11 | 91 | 4490 | • | 6 | MIDWAY SAND ISLAND
PAGO PAGO WSO AP | 2813N
1420S | 17721W
17043W | 10
10 | | 12
13 | 91
91 | 4690
4751 | 6 | 6
6 | PONAPE WSO | 0658N | 15813E | 123 | | 14
15 | 91
91 | 4851
4901 | 6
6 | 6
6 | TRUK MOEN IS WSO AP WAKE ISLAND WSO AP | 0727N
1917N | 15150E
16639E | 5
12 | | 16 | 91 | 4951 | 6 | 6 | YAP WSO AP | 0929N | 13805E | 44 | ## DATA CODE LEGEND Blank - More than 35 months missing # - More than 20 years missing (1st order stations only) - 1 Temperature only - 2 Precipitation only - 3 Snowfall only - 4 Temperature & precipitation (no snowfall) - 5 Precipitation & snowfall (no temperature) - 6 Temperature, precipitation & snowfall - 7 Temperature & snowfall (no precipitation) TEMPERATURE NORMALS (DEG F) | | | | | | | 17(10) | \ | 101111 | | (DL | , | | | | |--|--|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------| | STATION | | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | ANN | | ANDERSEN AFB GUAM
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 81.9
75.5
78.7
78.7 | 81.7
75.1
78.5
78.6
.0 | 82.4
75.4
78.9
78.6 | 83.3
76.2
79.8
79.8
.0 | 84.2
77.3
80.8
80.6 | 84.5
77.4
81.0
80.7 | 84.0
76.4
80.4
.0 | 83.9
76.5
80.2
80.1 | 84.2
76.6
80.4
80.2 | 84.1
77.1
80.6
80.5
.0 | 83.9
77.3
80.6
80.6 | 82.9
76.6
79.7
79.7
.0 | 83.4
76.5
80.0
80.0 | | CLARK AFB LUZON
2400 LT | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 85.5
70.3
77.9
77.9
.0 | 87.6
70.7
79.2
78.9
.0 | 90.4
72.3
81.4
81.5 | 92.9
75.2
84.1
83.9
.0 | 92.3
76.3
84.3
84.2
.0 | 88.5
75.1200 | 86.9
74.7
80.8
80.0 | 85.9
74.4
80.2
80.3
.0 | 87,1
74,7
81,0
80,4 | 87.0
74.7
80.9
80.9
.0 | 86.8
73.4
80.2
80.1
.0 | 85.7
71.6
78.7
78.6
.0 | 88.1
73.7
80.9
80.9 | | FALALOP / ULITHI
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 85.6
76.6
81.1
81.4
.0 | 85.3
76.1
80.7
81.0
.0 | 86.7
77.2
82.0
82.1
.0 | 87.1
77.3
82.2
81.9
.0 | 87.5
77.2
82.4
82.2
.0 | 87.4
77.5
82.5
82.4
.0 | 87.0
76.4
81.7
81.7
.0 | 87.3
76.3
81.8
81.9
.0 | 86.9
76.4
81.7
81.9
.0 | 87.0
76.4
81.7
81.9
.0 | 87.2
76.5
81.9
81.8
.0 | 86.6
75.7
81.2
81.3 | 86.8
76.6
81.7
81.8 | | GUAM NAS
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 85.3
75.2
80.3
80.1 | 85.4
74.6
80.0
80.1
.0 | 86.2
74.9
80.6
80.4
.0 | 87.0
75.9
81.5
81.5
.0 | 87.4
76.5
82.0
82.0
.0 | 87.8
77.2
82.5
82.6
.0 | 87.3
76.6
82.0
82.1
.0 | 87.1
76.3
81.7
81.7
.0 | 87.3
76.7
82.0
81.9
.0 | 87.6
76.5
82.0
82.1
.0 | 87.1
76.6
81.9
82.2
.0 | 86.2
76.0
81.2
81.0 | 86.8
76.1
81.5
81.6 | | GUAM WSMO
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 83.6
71.0
77.3
77.3
0 | 83.5
70.9
77.2
77.0
.0 | 84.5
71.1
77.8
77.7
.0 | 85.8
72.1
79.0
79.1
.0 | 86.8
72.6
79.7
79.7
.0 | 86.9
72.9
79.9
79.9
.0 | 86.3
72.4
79.4
79.4
.0 | 85.9
72.1
79.0
.0 | 86.1
72.2
79.2
79.1
.0 | 85.9
72.4
79.1
79.2
.0 | 85.3
73.1
79.2
79.3
.0 | 84.2
72.7
78.5
78.6 | 85.4
72.1
78.8
78.9 | | JOHNSTON IS WSMO AP
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 81.0
73.1
77.1
77.1
.0 | 80.9
73.0
77.0
77.2
.0 | 81.2
73.1
77.2
77.1
.0 | 81.9
74.0
78.0
77.9
.0 | 82.9
75.3
79.2
79.2
.0 | 84.2
76.4
80.3
80.6 | 84.9
77.2
81.1
81.5 | 85.5
77.7
81.6
81.8 | 85.5
77.5
81.5
81.3
.0 | 84.9
77.2
81.1
81.1
.0 | 83.3
75.6
79.4
79.4
.0 | 81.7
73.9
77.8
77.8 | 83.2
75.3
79.3
79.2 | | KOROR WSO
2400 LT
MID OBS
MID OBS | XAM JAMRON
NIM JAMRON
JAMRON
NAIDAM
XAM LOA BMIT
XAM LOA BMIT
NIM LOA BMIT | 87.0
75.1
81.1
81.1
.0 | 87.0
75.0
81.0
81.1
.0 | 87.7
75.3
81.5
81.6
.0 | 88.4
75.9
82.2
82.1
.0 | 88.6
76.1
82.4
82.4
.0 | 87.8
75.5
81.7
81.8 | 87.1
75.4
81.3
81.2
.0 | 87.2
75.7
81.5
81.6 | 87.7
76.1
81.9
82.0
.0 | 87.9
75.9
81.9
82.0
.0 | 88.5
76.0
82.3
82.3 | 87.9
75.6
81.8
81.8
.0 | 87.7
75.6
81.7
81.7 | | KWAJALEIN MISSILE RNG
1200 LT MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
ALDAN
NAIDAN
XAM COA BMIT
NIM COA BMIN | 85.8
77.0
81.4
81.6
.0 | 86.5
77.1
81.8
91.8
.0 | 87.1
77.4
82.3
82.1
.0 | 86.7
77.4
82.1
82.1
.0 | 86.7
77.3
82.0
82.1
.0 | 86.7
77.2
82.0
82.1
.0 | 86.7
77.1
81.9
81.8
.0 | 87.1
77.2
82.2
82.1
.0 | 87.0
77.1
82.1
82.2
.0 | 87.0
77.3
82.2
82.3
.0 | 86.7
77.3
82.0
82.0 | 86.1
77.3
81.7
81.9
.0 | 86.7
77.2
82.0
82.1 | | KOSRAE
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 87.9
75.6
81.8
81.8
.0 | 87.9
74.8
81.4
81.7
.0 | 87.8
74.7
81.3
81.3
.0 | 87.6
75.2
81.4
81.4 | 87.5
74.8
81.2
81.3
.0 | 88.0
74.6
81.3
81.6 | 87.9
74.3
81.1
81.3
.0 | 88.3
74.7
81.5
81.9
.0 | 88.3
74.5
81.4
81.7
.0 | 88.8
74.8
81.8
82.2
.0 | 88.5
74.7
81.6
81.9 | 88.3
75.7
82.1
82.3
.0 | 88.1
74.9
81.5
81.6 | | MAJURD WSO AP
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 85.0
76.5
80.7
80.8
.0 | 85.4
76.7
81.1
81.1
.0 | 85.6
76.6
81.1
81.0
.0 | 85.6
76.5
81.1
81.1
.0 | 85.8
76.6
81.2
81.3
.0 | 85.8
76.3
81.1
81.2 | 85.7
76.1
80.9
80.9
.0 | 86.2
76.3
81.3
81.3
.0 | 86.3
76.3
81.4
81.4
.0 | 86.3
76.2
81.3
81.4
.0 | 86.0
76.3
81.2
81.2 | 85.3
76.3
80.8
80.8
.0 | 85.8
76.4
81.1
81.1 | | MIDWAY SAND ISLAND
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 70.5
62.2
66.4
66.4
.0 | 70.0
62.0
66.0
65.8 | 71.1
62.8
67.0
66.9
.0 | 72.1
63.6
67.9
67.7
.0 | 75.5
67.3
71.4
71.6
.0 | 81.1
72.6
76.9
77.1
.0 | 83.5
74.9
79.2
79.4
.0 | 84.4
75.6
80.0
79.8 | 84.0
75.0
79.5
79.4
.0 | 81.3
72.6
77.0
76.8
.0 | 77.0
69.0
73.0
73.0
.0 | 73.0
64.7
68.9
69.1
.0 | 77.0
68.5
72.8
72.8 | | PAGO PAGO HSO AP
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 86.4
75.4
80.9
80.9
.0 | 86.6
75.4
81.1
81.1
.0 | 86.8
75.6
81.2
81.3
.0 | 86.3
75.2
80.8
80.8 | 85.1
75.2
80.2
80.1
.0 | 84.2
75.3
79.8
79.8
.0 | 83.1
74.5
78.8
78.7
.0 | 83.3
74.3
78.9
78.8
0 | 84.4
74.7
79.6
79.6
.0 | 84.8
75.3
80.0
80.0 | 85.3
75.3
80.3
80.3
.0 | 86.0
75.4
80.7
80.5
.0 | 85.2
75.1
80.2
80.2 | | PONAPE HSO
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 86.6
75.5
81.0
81.1
.0 | 86.7
75.6
81.2
81.3
.0 | 87.2
75.6
81.4
81.1
.0 | 87.4
75.0
81.2
81.3 | 87.6
74.8
81.2
81.1
.0 | 87.6
74.1
80.9
81.0
.0 | 87.8
73.1
80.4
80.3
.0 | 88.2
73.0
80.6
80.6 | 88.1
72.9
80.5
80.5
.0 | 88.2
72.9
80.6
80.4
.0 | 88.1
73.4
80.8
80.8 | 87.2
74.9
81.1
81.1
.0 | 87.6
74.2
80.9
80.9 | | TRUK MOEN IS WSO AP
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 85.8
76.9
81.4
81.3
.0 | 85.9
77.0
81.5
81.5 | 86.3
77.1
81.7
81.7
.0 | 86.7
77.0
81.9
82.0 | 87.2
76.8
82.0
81.9
.0 | 87.2
76.2
81.8
81.7 | 87.1
75.5
81.3
81.3
.0 | 87.3
75.5
81.4
81.3
.0 | 87.3
75.6
81.5
81.6 | 87.3
75.7
81.6
81.4 | 87.2
76.3
81.8
81.9
.0 | 86.4
77.0
81.7
81.7
.0 | 86.8
76.4
81.6
81.6 | | MAKE ISLAND WSO AP
2400 LT
MID OBS
MID OBS | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
TIME ADJ MAX
TIME ADJ MIN | 82.3
72.7
77.5
77.5
.0 | 82.0
72.1
77.1
76.8
.0 | 83.1
72.9
78.1
78.1
.0 | 83.9
73.4
78.7
78.3
.0 | 85.7
75.1
80.4
80.1
.0 | 87.6
76.7
82.2
82.1
.0 | 88.2
77.3
82.8
82.8
.0 | 88.2
77.4
82.8
82.7 | 88.2
77.7
83.0
82.9
.0 | 87.4
77.2
82.3
82.2
.0 | 85.5
76.1
80.8
80.8
.0 | 83.5
74.2
78.9
79.1
.0 | 85.5
75.2
80.4
80.3 | NOTE: 1. ADJUSTMENT FACTORS WILL ADJUST TEMPERATURE TO MIDNIGHT OBSERVATION TIME. 2. TIME APPEARING UNDER STATION NAME IS CURRENT OBSERVATION TIME. ## TEMPERATURE NORMALS (DEG F) | TEMPERATURE NURMALS (DEG F) | | | | | | | | | | | | | | | |-----------------------------|--|------------------------------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------|------------------------------| | STATIO |)N | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | ANN | | YAP MSO AP
2400 LT | NORMAL MAX
NORMAL MIN
NORMAL
MEDIAN
MID OBS TIME ADJ MAX
MID OBS TIME ADJ MIN | 85.9
74.3
80.3
80.0 | 86.55
74.55
80.50
80.50 | 86.9
74.9
80.9
80.0
.0 | 87.7
75.3
81.5
81.6
.0 | 87.8
75.6
81.5
81.0
.0 | 87.3
75.0
81.2
81.3
.0 | 86.8
74.6
80.7
80.7
.0 | 86.8
74.5
80.7
80.6
.0 | 87.1
74.6
80.9
80.9
.0 | 87.2
74.7
81.0
81.1
.0 | 87.2
74.9
81.1
81.1
.0 | 86.5
75.8
80.8
.0 | 87.0
74.9
80.9
80.9 | - | NOTE: 1. ADJUSTMENT FACTORS WILL ADJUST TEMPERATURE TO MIDNIGHT OBSERVATION TIME. 2. TIME APPEARING UNDER STATION NAME IS CURRENT OBSERVATION TIME. # PRECIPITATION NORMALS (INCHES) | | | | . ' | ILC | <u> </u> | / 1 1 1 | OIV I | OIIII | ,,,,,, | (1 11 | CITE | , , | | | |-----------------------|------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------| | STATION | | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | ANN | | ANDERSEN AFB GUAM | NORMAL
MEDIAN | 5.70
4.77 | 5.22
4.03 | 4.09 | 4.87
3.30 | 6.60
3.32 | 6.34
6.42 | 10.92 | 13.42
13.45 | 13.32
11.86 | 12.89 | 9.09
8.28 | 6.27
5.73 | 98.73
95.74 | | CLARK AFB LUZON | NORMAL
MEDIAN | .51 | .68 | 1.07 | 2.28 | 7.82
5.88 | 11.76
10.81 | 15.87
13.69 | 16.04
13.83 | 12.44 | 7.29
7.10 | 4.04
2.78 | 1.54 | 81.34
80.49 | | FALALOP / ULITHI | NORMAL
MEDIAN | 6.93 | 5.59
4.43 | 4.78 | 4,99
3,43 | 8.47
7.60 | 11.55
10.11 | 13.37 | 13.97
13.56 | 13.53
11.74 | 12.53
12.17 | 9.23
8.86 | 9.48
8.01 | 114.42
110.21 | | GUAM NAS | NORMAL
MEDIAN | 4 . 45
3 . 53 | 3.74
2.38 | 2.98
2.38 | 3.91
2.66 | 6.05
4.08 | 6.47
6.07 | 10.53
10.06 | 13.73
14.04 | 13.49
12.73 | 12.08 | 8.20
8.35 | 5.39
5.09 | 91.02
92.67 | | GUAM WSMO | NORMAL
MEDIAN | 5.55
4.56 | 5.11
3.91 | 4,45
3,38 | 4.71
2.93 | 7.10
4.03 | 6.49
6.34 | 11.78
12.06 | 14.59
13.70 | 15.02
14.39 | 12.74
11.94 | 9.06
7.97 | 6.44
6.02 | 103.04
102.29 | | JOHNSTON IS WSMO AP | NORMAL
MEDIAN | 1.56 | 1.66 | 2.38
1.51 | 2.46
1.82 | 1.98
1.05 | 1.00 | 1.02
.86 | 1.97
1.65 | 2.20
1.97 | 3.16
2.36 | 4.25
2.60 | 3.12
2.41 | 26.76
25.38 | | KOROR WSO | NORMAL
MEDIAN | 10.70
8.92 | 9.12
8.38 | 8.20
7.43 | 8.67
7.17 | 11.99
11.06 | 17.27
17.18 | 18.04
17.67 | 14.95
14.83 | 11.86
12.27 | 13.87
12.87 | 11.32
11.03 | 11.98
11.51 | 147.97
152.74 | | KWAJALEIN MISSILE RNG | NORMAL
MEDIAN | 4.56
3.68 | 3.23
2.95 | 4.10
3.88 | 7.55
5.78 | 9.98
9.13 | 9.62
9.44 | 10.44
10.59 | 10.11
10.02 | 11.83
11.98 | 11.91
11.31 | 10.66
9.91 | 8.10
6.24 | 102.09
103.00 | | KOSRAE | NORMAL
MEDIAN | 13.63
13.70 | 13.18
12.84 | 15.40
14.37 | 16.15
16.28 | 17.47
17.63 | 15.80
15.50 | 15.54
15.40 | 14.76
13.82 | 13.23
12.56 | 13.67
14.24 | 15.46
15.97 | 16.39
16.06 | 180.68
182.60 | | MAJURO WSO AP | NORMAL
MEDIAN | 8.43
8.16 | 6.15
5.28 | 8.28
7.21 | 10.28
9.30 | 11.18
10.88 | 11.59
11.71 | 13.00
13,53 | 11.52
11.19 | 12,42
11.50 | 13.84
13.93 | 12.80
12.08 | 11.85
10.93 | 131.34
131.61 | | MIDWAY SAND ISLAND | NORMAL
MEDIAN | 4.78
4.78 | 3.68
3.14 | 3.69
2.86 | 2.80
1.86 | 2.17
1.48 | 1.95
1.60 | 3.54
2.92 | 4.10
3.43 | 3.59
3.11 | 3.43
2.32 | 4.44
3.92 | 4.36
4.30 | 42.53
39.97 | | PAGO PAGO WSO AP | NORMAL
MEDIAN | 12.59
10.66 | 12.76
11.44 | 11.26
9.56 | 12.04
10.77 | 9.92
8.74 | 7.38
6.23 | 6.28
5.61 | 6.71
5.68 | 6.69
5.16 | 10.79
10.03 | 10.84
9.71 | 14.54
14.53 | 121.80
119.31 | | PONAPE WSO | NORMAL
MEDIAN | 12.07
11.19 | 10.80
11.45 | 13.54
13.07 | 16.44
16.69 | 19.12
18.94 | 17.14
17.04 | 18.39
16.04 | 16.53
16.50 | 16.06
15.18 | 16.71
16.84 | 15.74
15.88 | 15.22
15.04 | 187.76
191.70 | | TRUK MOEN IS WSO AP | NORMAL
MEDIAN | 8.98
8.89 | 6.42
6.51 | 9.05
7.76 | 11.46
10.86 | 13.94
13.55 | 11.84
12.21 | 14.37
13.66 | 13.77
13.08 | 12.07
12.14 | 14.23
15.52 | 11.10
9.28 | 11.55
11.15 | 138.78
135.45 | | WAKE ISLAND WSO AP | NORMAL
MEDIAN | 1.16
.94 | 1.60
1.42 | 2.23
1.48 | 2.51
1.78 | 1.74
1.60 | 2.29
1.82 | 4.02
3.13 | 6.16
4.97 | 5.07
4.28 | 4.33
3.22 | 2.79
2.66 | 1.78
1.37 | 35.68
35.38 | | YAP WSO AP | NORMAL
MEDIAN | 7.33
6.12 | 5.98
5.45 | 5.96
5.02 | 5.76
4.78 | 9.06
8.95 | 12.69
12.34 | 14.54
13.95 | 15.20
14.79 | 13.51
12.65 | 11.97
11.93 | 9.07
9.18 | 8.99
8.96 | 120.06
120.08 | : | : | | | | | | | | | | | | l | | 1 | l | 1 | 1 | 1 | l | HEATING DEGREE DAY NORMALS (BASE 65 F) | | HEALL | | ING DEGREE L | | E DAT NURMALS | | 2 IBASE | | . 65 FJ | | | | | |--|---------|---------|--------------|---|---------------|-------|---------|---|---------|---|-------|-------|-------| | STATION | JUL | AUG | SEP | 0CT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | ANN | | ANDERSEN AFB GUAM
CLARK AFB LUZON
FALALOP / ULITHI
GUAM NAS
GUAM NSMO | 00000 0 | 00000 0 | 00000 | 000000000000000000000000000000000000000 | 00000 | 00000 | 00000 | 000000000000000000000000000000000000000 | 00000 | 000000000000000000000000000000000000000 | 00000 | 00000 | 00000 | | JOHNSTON IS WSMO AP
KOROR WSO
KMAJALEIN MISSILE RNG
KOSRAE
MAJURO WSO AP | 00000 | 00000 | 00000 | 00000 | 0000 | 0000 | 0000 | 0000 | 00000 | 00000 | 0000 | 0000 | 0000 | | KWAJALEIN MISSILE RNG
KOSRAE | O
O | 0 | 0 | 0 | 1 0 | 0 | 0 | 8 | 0 | 0 | . 0 | 0 | 8 | | | | | | | | | | | | | | | | COOLING DEGREE DAY NORMALS (BASE 65 F) | | | OOLI | IVU | DEGI | | ואט | HOIN | ILL | () | 77 | י כט | , | | |---|--|--|--|---|---|---|---|---|--|---|--|--|--| | STATION | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | ANN | | ANDERSEN AFB GUAM
CLARK AFB LUZON
FALALOP / ULITHI
GUAM NAS
GUAM HSMO | 425
400
499
474
381 | 378
398
440
420
342 | 431
508
527
484
397 | 444
573
516
495
420 | 490
598
539
527
456 | 480
513
525
525
447 | 477
490
518
527
446 | 471
471
521
518
437 | 462
480
501
510
426 | 484
493
518
527
437 | 468
456
507
507
426 | 456
425
502
502
419 | 5466
5805
6113
6016
5034 | | JOHNSTON IS WSMO AP KOROR WSO KWAJALEIN MISSILE RNG KOSRAE MAJURO WSO AP | 375
499
508
521
487 | 336
448
470
459
451 | 378
512
536
505
499 | 390
516
513
492
483 | 440
539
527
502
502 | 459
501
510
489
483 | 499
505
524
499
493 | 515
512
533
512
505 | 495
507
513
492
492 | 499
524
533
521
505 | 432
519
510
498
486 | 397
521
518
530
490 | 5215
6103
6195
6020
5876 | | | 487
72
493
496
508
388
474 | 451
451
454
462
339
434 | 499
93
502
508
518
406
493 | 483
112
474
486
507
411
495 | 502
205
471
502
527
477
515 | 483
357
444
477
504
516
486 | 493
440
428
477
505
552
487 | 505
465
481
484
508
552
487 | 492
435
465
495
540
477 | 505
372
465
484
515
536
496 | 240
459
474
504
474
483 | 130
487
497
518
431
490 | 5876
2982
5543
5806
6071
5622
5817 | 051440 - CEDAREDGE | | MEAN TEMPERATURE | |-----------------------------|------|------------------| | LAT: 3854N LON: 10756W ELV: | 6244 | | | 1961
1962
1963
1964
1965 | JAN
26.9
22.6
18.0
24.2
32.0 | FEB
33.7
35.0
36.0
26.8
31.5 | MAR
39.9
35.2
38.3
33.5
35.5 | APR
46.6
50.2
47.4
45.1
46.8 | MAY
57.9
55.6
60.5
55.9
53.7 | JUN
69,1
64,4
64,2
62,9
61,6 | JUL
71,9
69.3
72.8
72.6
69.4 | AUG
70,7
69,4
69,2
66,6
67,0 | SEP
56.2
62.5
64.8
60.5
56.8 | 0CT
49.6
52.2
56.3
54.0
51.8 | NOV
35.7
41.8
41.1
36.2
41.7 | DEC
23.7
30.1
28.0
29.7
33.2 | ANN
48.5
49.0
49.7
47.3
48.4 | |--------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---| | 1966
1967
1968
1969
1970 | 25.6
27.5
22.2
31.1
28.7 | 28.4
33.8
34.1
31.1
37.6 | 41.7
44.8
39.5
35.4
35.7 | 47.4
47.3
42.8
50.7
41.3 | 59.2
55.3
54.7
61.5
58.7 | 65.2
62.7
67.3
62.4
64.8 | 72.9
72.1
71.2
73.0
71.8 | 69.7
69.9
65.0
72.8
72.0 | 63.0
62.7
59.8
63.0
58.4 | 50.1
52.4
51.6
43.5
44.4 | 42.0
39.4
35.6
36.0
38.7 | 28.5
22.9
26.7
31.1
30.2 | 49.5
49.2
47.5
49.3
48.5 | | 1971 | 28.2
29.3
20.1
21.0 | 30.8
35.1
29.7
24.7
30.3 | 38.0
45.0
38.0
44.0
37.8 | 46.2
49.4
43.5
45.8
43.5 | 53.8
57.4
55.7
59.8 | 67.1
67.6
63 | 72.2
72.8
70.2 | 71.3
70.6
69.6
67.9 | 58.4
61.5
59.8
61.3
60.5 | 48.8
49.7
50.5
51.9
50.7 | 35.8
32.1
40.2
37.1
35.4 | 25.6
24.1
27.9
25.3 | 49.0 | | | | | 37.1X
26.4 | 47 | | | | | 1 8 | 47.1
52 | | | | REQUESTS FOR MICROFICHE COPIES OF THIS REPORT, AND MICROFICHE HAVING ADDITIONAL NORMALS STATISTICS, SHOULD BE ADDRESSED TO: NATIONAL CLIMATIC DATA CENTER 151 PATTON AVENUE RM 120 ASHEVILLE, NC 28801-5001 THE REQUESTED MICROFICHE WILL BE PROVIDED AT COST (828) 271-4800 | 1965
1989
1990 | 25. | | | | | 06.4
70.3 | 74.5
72.6 | | | | | 22.2 | 50.3
50.5
50.4 | |------------------------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------------------|--------------|--------------|----------------------| | 61-90 NORMAL
61-90 MEDIAN | 26.4
26.9 | 32.
32.9 | | 47.4 | 56.6
56.2 | 66,2
65.8 | 72.1
72.3 | 69.8
69.9 | 62.0 | | 38.0
38.1 | 28.5
28.8 | 49.1
49.3 | | 70-90 MEAN
70-90 MEDIAN | 26.8
27.7 | 32.5
32.4 | 40.0
39.4 | 47.7
47.7 | 56.3
56.4 | 66.9
67.1 | 72.2
72.4 | 70.2
70.4 | 61.9
61.8 | 50.4
50.7 | 37.7
37.9 | 28.7
29.0 | 49.3
49.6 | | 80-90 MEAN
80-90 MEDIAN | 28.5
27.8 | 33.1
34.3 | 40.6
40.1 | 48.7
49.5 | 56.5
56.5 | 67.7
68.6 | 72.5
72.6 | 79.7
70.7 | 62.4
62.6 | 50.6
50.9 | 38.5
38.3 | 29.8
29.6 | 50.0
50.3 | | 61-90 SD | 4.229 | 3,255 | 3.407 | 3.075 | 2.395 | 2.837 | 1,324 | 1.875 | 2.595 | 3.093 | 2.550 | 3,691 | 1,155 | | MAXIMUM
YR OF MAXIMUM | 35 . 1
1981 | 37.6
1970 | 45.8
1989 | 53.9
1981 | 61.5
1969 | 70.9
1977 | 74.6
1989 | 72.8+
1983 | 65.6+
1990 | 56.3
1963 | 42.2
1981 | 38.2
1980 | 51.9
1981 | | MINIMUM
YR OF MINIMUM | 18.0
1963 | 24.7
1974 | 33.5
1964 | 41.3
1970 | 52.7
1983 | 61.6
1965 | 69.3
1962 | 65.0
1968 | 56.2
1961 | 43 ¹ 5
1969 | 32.1
1972 | 20.4
1978 | 47.0
1975 | | ESTIMATED VALUES | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | | HEATING DEG DAYS | 1197 | 913 | 791 | 525 | 267 | 72 | O | 1.1 | 137 | 443 | 810 | 1132 | 6298 | | COOLING DEG DAYS | 0 | 0 | 0 | 0 | 7 | 108 | 220 | 160 | 38 | 0 | 0 | 0 | 533 | | 051440 - 0
LAT: 3854N | EDAREDI | GE
10756H | ELV: 62 | 44 | | T | OTAL PRE | CIPITATI | 0 N | | • | | | | |------------------------------|------------------------------|--|---|--|--|---|--|---|--|---|------------------------------------|--|----------------------------------|--| | ,
,
, | 1961
1962
1963
1964 | JAN
.07
.68
1.28
.31
1.04 | FEB
.31
1.95
.70
.21
.82 | MAR
1,80
.73
1,16
1,22
1,10 | APR
1.04
1.37
.50
1.75
1.40 | MAY
1.06
.69
.48
1.98
1.52 | JUN
.09
.58
.35
.70 | JUL
19
1.31
1.01
31
1.58 | AUG
1,09
,17
1,23
2,91
2,00 | SEP
3.40
1.59
.93
.97
2.71 | 0CT
1.59
1.12
1.63
.00 | NOV
.65
.79
.86
1.25
2.47 | DEC
.95
.88
.32
1.49 | ANN
12,24
11,86
10,45
13,10
17,89 | | 1 | 1966
1967
1968
1969 | .31
.55
.21
1.88
.45 | .67
.14
1.99
.83 | .14
.50
.59
.64 | .79
.31
.54
.16 | 1.32
1.08
.98
.52
.06 | .41
1.04
.04
2.99
2.04 | .39
1.21
2.28
.73
.47 | .53
1.74
1.48
.98
.87 | .36
1.53
.07
1.18
4.18 | .55
.001
.87
2.94
1.58 | 1,02
.35
1,04
.50
.93 | 2.47
1.67
.90
.63 | 8.96
10.12
10.99
13.98
14.41 | | • | 1971 | .53
.01
1.07
2.07 | .78
.001
.30
.27
.92 | .11
.08
1.09
.43
1.54 | 1.42
.24
.43
1.05
.53 | 1.23
.32
1.60
.007 | . 00 1 | .52
.17
: 50 | 1,69
,46
1,19
,54
07 | 1.23
2.09
.28
.60
.29 | 2.45
4.92
.49
1.32
.45 | 1.10
1.17
.55
.86
.53 | 1.67
1.31
.88
.71 | 12.73 | | | | | | .68 | · · | | | | | 99 | .21 | | | | | | COP
MICF
NOR | UESTS FOR
IES OF THE
ROFICHE HA
IMALS STA | IS REPORT
AVING ADD
TISTICS, S | r, and
Ditional | | 151 PATT
ASHEVIL | AL CLIMA ^T
FON AVEI
LE, NC 28 | NUE RM | 120 | ₹ | | DUESTED
PROVIDE | MICROFICI
D AT | HE | | | BE / | ADDRESSE |) TO: | | | (828) 271 | -4800 | _ | | | | | | · | | | 1985
1989
1990 | .0 | | | | | .71
.25 | 2.52 | | | | | .71 | 10.58
12.61 | | 51-90 NORMAL
51-90 MEDIAN | | . 88
. 73 | .68 | <u> </u> | .69 | 1.14 | . 75
. 43 | . 96
. 89 | 1,19
1,15 | .87 | | 1.13 | 1.06
.89 | 12,83
12,67 | | 1985
1989
1990 | .0 | | | | | .71
.25 | 2.52 | | | | | .71 | 10.58
12.61 | |--------------------------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|----------------|------------------|--------------|--------------|----------------| | 61-90 NORMAL
61-90 MEDIAN | . 88
. 73 | .68 | <u> </u> | .69 | 1.14 | . 75
. 43 | . 96
. 89 | 1,19
1,15 | .87 | | 1.13 | 1.06
.89 | 12,83
12,67 | | 70-90 MEAN
70-90 MEDIAN | . 96
. 89 | .77 | 1.37
1.28 | .93
.64 | 1,16 | .72
.40 | . 95
. 87 | 1.13
1.11 | 1.31
.71 | 1.64
1.51 | 1.18
1.09 | 1.01 | 13.13
13.52 | | 80-90 MEAN
80-90 MEDIAN | . 98
. 95 | .89
.62 | 1.65
1.39 | 1.07 | 1,34
1,14 | .73
.40 | 1.20
1.10 | 1,41
1,39 | 1.56
.75 | 1 , 91
1 , 78 | 1.53
1.50 | 1.12 | 15.39
15.61 | | MAXIMUM
YR OF MAXIMUM | 2.23
1978 | 2.50
1980 | 3.17
1985 | 2.79
1985 | 3.05
1980 | 2.99
1969 | 2.52
1989 | 2.91
1964 | 4.18
1970 | 4.92
1972 | 2.72
1986 | 3.26
1983 | 19,99
1983 | | MINIMUM
YR OF MINIMUM | .01
1972 | .00
1972 | .08
1972 | .16
1969 | .00
1974 | .00
1971 | .17
1972 | .05
1985 | .03
1979 | .00+
1967 | .05
1989 | .05
1976 | 7.50
1977 | | ESTIMATED VALUES | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 10 PERCENTILE
90 PERCENTILE | .15
1.88 | ,12
1,68 | .24
2.54 | . 24
1 . 78 | .25
2.27 | .05
1.78 | .29
1.81 | .27
2.42 | . 15
3 . 06 | .15
3.15 | .27
2.24 | .23
2.17 | 8.56
17.54 |